
Miscellaneous Exercise Question Bank

ONLY ONE OPTION CORRECT TYPE

1. C	atenation	tendency	in	group	14 is	:
-------------	-----------	----------	----	-------	-------	----------

- (A) $C \gg Si > Ge \approx Pb$ due to bond energies of C H > Si H > Ge H > Sn H
- (B) $C \gg Si \gg Ge \approx Sn \gg Pb$ due to bond energies of $C C \gg Si C \gg Ge C \gg Sn C$
- (C) $C \approx Si \approx Ge \approx Sn \approx Pb$ due to bond energies of C H > Si H > Ge H > Sn H
- (D) $C >> Si > Ge \simeq Sn > Pb$ due to bond energies of C C > Si Si > Ge Ge > Sn Sn

Select the correct option:

- (A) is SiF_4
- (B)
- (B) is H₂SiF₆
- (C) (C) is H_4SiO_4 (D)
 - (D) All of these
- **3.** Aluminium vessels should not be washed with materials containing washing soda because :
 - (A) Washing soda is expensive
 - (B) Washing soda is easily decomposed
 - (C) Washing soda reacts with aluminium to form soluble aluminate
 - (D) Washing soda reacts with aluminium to form insoluble aluminium oxide

4.
$$B_2H_6 + NH_3 \rightarrow Addition compound (X) \xrightarrow{450 \text{ K}} Y + Z(g)$$

In the above sequence Y and Z are respectively:

(A) borazine, N_2

(B) boron, H₂

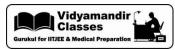
(C) boron nitride, H₂

- (D) borazine and hydrogen
- **5.** Aqueous ammonia is used as a precipitating reagent for Al^{3+} ion as $Al(OH)_3$ rather than aqueous NaOH, because:
 - (A) NH_4^+ is a weak base

- **(B)** NaOH is a very strong base
- (C) NaOH forms soluble $[Al(OH)_4]^-$ ions
- **(D)** NaOH forms $[Al(OH)_2]^+$ ions

6.
$$H_3BO_3(s) + aq. \text{ NaOH} \xrightarrow{\Delta} (X) ; H_3BO_3(s) + \text{molten NaOH} \xrightarrow{\Delta} (Y).$$

Compound (X) & (Y) are respectively:


(A) Na_3BO_3 , Na_3B

(B) Na_3BO_3 , $NaBO_2$

- (C) $Na[B(OH)_4]$, Na_3BO_3
- **(D)** Na_3BO_3 , $Na[B(OH)_4]$

- **7.** BF_3 on hydrolysis form :
 - (A) H_3BO_3
- **(B)** HBF₄
- (C) both (A) & (B) (D)
- None of these

- **8.** Which of the following reaction is incorrect?
 - (A) $BF_3(g) + F^-(aq) \longrightarrow BF_4^-$
- **(B)** $BF_3(g) + 2H_2O \longrightarrow [BF_3OH]^- + H_3O^+$
- (C) $BCl_3(g) + 3EtOH(\ell) \longrightarrow B(OEt)_3(\ell) + 3HCl$
- (D) $BCl_3(g) + 2C_5H_5N(\ell) \longrightarrow Cl_3B(C_5H_5N)_2(s)$

9.	Which												
	(A)	Lead with cond	. H ₂ SO	4	(B)	Lead with cond	e. HCl						
	(C)	Aluminium wit	h conc.	HNO_3	(D)	All of above rea	actions						
10.	Which	of the following statements regarding ortho boric acid (H_3BO_3) is false?											
	(A)	It acts as a wea	ak mone	obasic acid	(B)	It is soluble in	hot wat	er					
	(C)	It has a planar	structu	ıre	(D)	It acts as a trib	oasic ac	id					
11.	Which	h of the following is a correct match:											
	I.	Potash alum – ${ m K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O}$											
	II.	Chrome alum	- K ₂ SO	$_4 \cdot \operatorname{Cr}_2(\operatorname{SO}_4)_3 \cdot 24$	H_2O								
	III.	Potash alum K	$X_2SO_4 \cdot I$	$\operatorname{Fe}_2(\operatorname{SO}_4)_3 \cdot 24 \operatorname{H}_2$	О								
	IV.	Ammonium alum $-\left(\mathrm{NH_4}\right)_2\mathrm{SO_4}\cdot\mathrm{Al_2(SO_4)_3}\cdot24\mathrm{H_2O}$											
	(A)	I, II, III & IV	(B)	I, II & III	(C)	I, II & IV	(D)	Only II & IV					
12.	TlI ₃ i	s an ionic compo	ound wh	ich furnishes an	y of the	following ions :			\odot				
	(A)	Tl^+ & I_3^-	(B)	${\rm Tl}^{3+} \ \& \ {\rm I}_3^-$	(C)	Tl^{3+} & I^{-}	(D)	Tl ⁺ & I ⁻					
13.	Which	of the following	is not fo	ormed as produc	t in the	reaction ?			\odot				
		$Na_2B_4O_7 + 2N$	H ₄ Cl —	Red hot									
	(A)	BN	(B)	B_2O_3	(C)	NaCl	(D)	$B_3N_3H_6$					
14.	A mixt	ure of ethyl alcol	hol and	boric acid burns	s with gr	een edged flame.	The gre	en edged flame o	contains :				
	(A)	Triethyl borate		ethyl boride	(C)	Acetaldehyde	(D)	diborane					
15.	Which	of the following	does no	t form alums :									
	(A)	K ⁺	(B)	Ga ³⁺	(C)	Cr^{3+}	(D)	Li ⁺					
16.	Ionisat	tion energy for th	ne eleme	ents of group 13	follows t	the order :							
	(A)	B > Al > Ga > l	$\ln > T\ell$		(B)	B < Al < Ga < l	$\ln < T\ell$						
	(C)	B < Al > Ga < I	$\ln > T\ell$		(D)	B > Al < Ga > l	$In < T\ell$						
17.	Which	of the following	stateme	ents is correct?									
	(A)	$\mathrm{T}\ell \left(\mathrm{NO}_{3}\right)_{\!3}$ act	as an o	xidising agent									
	(B)	CO ₂ is a gas v	vhile Si	O ₂ is solid									
	(C)	PbO ₂ is strong	ger oxid	ising agent than	SnO_2								
	(D)	All are correct											
18.	2Al + I	$N_2 \rightarrow X \xrightarrow{H_2O}$	Y + Z ↑						\odot				
	Correc	t statement rega	rding Y										
	(A)	Y is soluble in	H_2O										
	(B)	Y is insoluble i	n H ₂ O										
	(C)	Y is only basic	and do	es not show acid	ic behav	riour							
	(D)	M.W. of 'Y' is 1	7										

19.	Select	the incorrect sta	tement:						
	(A)	Silicon does no bond.	ot form a	an allotrope like	graphite	because it do	not has	tendency to for	m multiple
	(B)		dency is	greater in C tha	ın in Si.				
	(C)	CO is stable in	nature l	out SiO is not					
	(D)	None of these							
20.	Which	of the following	statemer	nt about Si is co	rrect?				
	(A)	Si predominan	tly forms	covalent compo	ounds wi	th oxidation nu	ımber +4	•	
	(B)	Ionisation enth	alpy of S	Si is more than t	hat of ca	rbon.			
	(C)	Electron affinit	y of Si is	less than that	of carbon	ı .			
	(D)	Si can't show o	coordinat	ion number mo	re than 4	:•			
21.	Which	of the following	is not a p	property of silico	nes?				
	(A)	They are comb	ustible						
	(B)	They are water	-repellan	nt					
	(C)	They are polyn	neric liqu	ids or solids					
	(D)	Their viscosity	does not	change signific	antly wit	h rise in tempe	rature		
22 .	The de	hydration of ma	lonic acid	d CH ₂ (COOH) ₂	with P ₄ C	o ₁₀ gives:			\odot
	(A)	carbon monox	ide		(B)	carbon subox	ide		
	(C)	carbon dioxide			(D)	all three			
23.	Correc	t statement amo	ng the fo	ollowing is :					\odot
	(A)	CNC bond ang	le in NM	e ₃ is greater tha	an SiNSi	bond angle in	N(SiMe ₃)3.	
	(B)	Methyl isocya	nate (Cl	$H_3 - N = C = O)$	is bent	with respect	to nitro	gen but silyl	isocyanate
		$(SiH_3 - N = C =$	O) is lir	near with respec	t to the s	same.			
	(C)	In trisilyl amir	ne [(SiH ₃	3) ₃ N] all N – Si	bond le	ngths are long	er than t	he expected N	I-Si bond
		length.							
	(D)	All the above s	tatement	s are correct.					
24.	Water	transported thro	urah lead	l nines hecomes	noisonoi	is due to the fo	rmation (of ·	
2 1 .	(A)	PbO	_	PbO $_2$		Pb(OH) ₂	(D)	Pb ₃ O ₄	
25						_	(_)	1 23 2 4	\bigcirc
25.	(A)	steam is passed Producer gas	(B)	Water gas	идоинд д (С)	Coal gas	(D)	None of the a	bove
26.	_	the $B-F$ bo	_		_		e treated	with Me ₃ N, i	
		e , Me ₃ N \rightarrow BF ₃ ,		d length of B – F					$lackbox{(}lackbox{)}$
	(A)	Greater than 1			(B)	Smaller than			
	(C)	Equal to 1.30	À		(D)	None of these			
27.	When A	Al is added to KO	OH soluti	ion :					\odot
	(A)	No action take	s place		(B)	Oxygen is evo	lved		
	(C)	Water is produ	ced		(D)	Hydrogen is e	evolved		

VMC | MEQB p-Block Elements-1

ONE OR MORE THAN ONE OPTION CORRECT TYPE

28.	Select	the correct statement(s).												
	(A)	The graphite is diamagnetic and diamor	nd is pa	aramagnetic in nature.										
	(B)	Graphite acts as a metallic conductor al	long th	e layers of carbon atoms.										
	(C)	Graphite is less denser than diamond												
	(D)	${\rm C_{60}}$ is called as Buckminster fullerene												
29.	Boron	can be obtained by :			\odot									
	(A)	reduction of B_2O_3 by C												
	(B)	reduction of BCl_3 with H_2 at 1270 K												
	(C)	thermal decomposition of boron halides	at 117	'3 К										
	(D)	electrolytic reduction of KBF_4 in KF at 1073 K												
30.	Which	of the following can produce silicon.												
	(A)	Reduction of SiO_2 by carbon	(B)	Reduction of SiO_2 by silicon carbide										
	(C)	Thermal decomposition of SiH_4	(D)	Thermal decomposition of SiC										
31.	Which	statement(s) is/are correct?												
	(A)	Al acts as a reducing agent												
	(B)	Al does not react with steam even at higher temperature												
	(C)	Al forms a number of alloys with other r	netals											
	(D)	Al is ionic in all its compounds												
32 .	Which	hich of the following statements are true?												
	(A)	Red lead (Pb_3O_4) is diamagnetic and co	ontains	both Pb ²⁺ and Pb ⁴⁺ ions										
	(B)	Both PbO and \ensuremath{PbO}_2 are amphoteric in	nature	•										
	(C)	Stannate and plumbate ions are oxidising	ng ager	nts										
	(D)	Concentrated Nitric acid oxidises red lea	ad into	lead dioxide										
33.	Dibora	ane undergoes unsymmetrical cleavage rea	actions	with:										
	(A)	dimethylamine	(B)	ammonia at low temperature										
	(C)	pyridine	(D)	carbon dioxide										
34.	Select	correct statements :												
	(A)	$\mathrm{B_2H_6}$ is stronger Lewis acid than $\mathrm{BF_3}$	(B)	BF_3 is weaker Lewis acid than BCl_3										
	(C)	$\mathrm{B_2H_6}$ is not a Lewis acid												
	(D)	$\mathrm{B}_{2}\mathrm{H}_{6}$ is used for reduction of organic c	ompou	nds										
35.	Borax	bead test is given by:												
	(A) A	n aluminium salt (B) A cobalt salt	(C)	A copper (II) salt (D) A nickel salt										
36.	Carbo	n monoxide is prepared by :			\odot									
	(A)	heating formic acid with conc. H_2SO_4												
	(B)	heating potassium ferrocyanide with co	nc H ₂ S	SO_4										
	(C)	heating malonic acid with P ₄ O ₁₀	_											
	(D)	hydrolysis of Mg ₂ C ₃												

37 .	The fol	lowing are some	stateme	nts about graph	ite:				\odot					
	I.	C – C bond length is 1.42 Å												
	II.	Distance between two successive layers is 3.35 Å												
	III.	Bond angle is	60°											
	The co	rrect statements	is/are:											
	(A)	All are correct	(B)	Only I and II	(C)	Only II	(D)	Only III						
38.	Which	of the following	are corre	ect:					\odot					
	(B)	$\mathrm{B_2H_6}$ undergoes symmetrical cleavage with $\mathrm{PF_3}$, CO and $(\mathrm{C_2H_5})_3\mathrm{N}$												
	(C)	$\mathrm{B_{2}H_{6}}$ undergoes unsymmetrical cleavage with $\mathrm{NH_{3},CH_{3}NH_{2},(CH_{3})_{2}NH}$												
	(D)	$BeH_2(s), Ga_2M$	Ie ₆ , Al ₂ M	Ie ₆ have two typ	e of bon	ds (2C – 2e b	ond as wel	las 3C-2e b	ond)					
39.	A complex cross-linked polymer (silicone) is formed by :													
	(A)	hydrolysis of (CH ₃) ₃ SiCl												
	(B)	hydrolysis of a mixture of (CH ₃) ₃ SiCl and (CH ₃) ₂ SiCl ₂												
	(C)	hydrolysis of C	hydrolysis of CH ₃ SiCl ₃											
	(D)	hydrolysis of S	SiCl ₄											
40.	Which	of the following	statemer	nts are correct?										
	(A)	Graphite is a g	good con	ductor of electri	city beca	use free elec	trons are s	pread out in t	he structure					
		and the adjacent layers are held by weak Vander Waals forces.												
	(B)	In C-60, there are 12 pentagonal and 20 hexagonal faces												
	(C)	Graphite is thermodynamically more stable than diamond												
	(D)	In diamond ea	ch carbo	n undergoes sp	3 hybridi	sation and is	three dim	ensional						
41.	The on	e which can't be	prepare	d by hydrolysis	of metal	carbide ?			\odot					
	(A)	C_4H_4	(B)	CH_4	(C)	$\mathrm{C_2H_2}$	(D)	C_3H_4						
42 .	Select	the correct state	ment ab	out the compou	nd NO[E	BF_4].			\odot					
	(A)	It has 5σ and	2π bond	s										
	(B)	Nitrogen-oxyge	n bond l	ength is higher	than nitr	ric oxide								
	(C)	"B-F" bond ene	ergy in th	is compound is	more tha	an in BF ₃								
	(D)	It is a diamagn	etic sub	stance										

COMPREHENSION TYPE

Paragraph for Q. 43 to 45

Compound (A) on reaction with iodine in the solvent diglyme gives a hydride (B) and hydrogen gas. The product (B) is instantly hydrolysed by water or aqueous alkali forming compound (C) and liberating hydrogen gas. The compound (C) in aqueous solution behaves as a weak mono basic acid. But in presence of certain organic polyhydroxy compound behaves as a strong monobasic acid. The hydride (B) in air catches fire spontaneously forming oxide which gives coloured beads with transition metal compounds.

VMC | MEQB 191 p-Block Elements-1

- **43.** Which of the following statement is correct for the product (C)?
 - (A) It is an odd electron molecule
 - (B) In water it acts as proton donor
 - **(C)** In solid state it have hydrogen bonding
 - (D) It is a useful primary standard for titrating against acids
- *44. Aqueous solution of product (C) can be titrated against sodium hydroxide using phenolphthalein indicator only in presence of :
 - **(A)** cis-1,2 diol
- **(B)** trans-1,2 diol **(C)**
- c) salicylic acid
- **(D)** propane-1, 3-diol
- **45.** Which of the following statement is correct for hydride (B)?
 - (A) One mole of it react with two moles of HCl
 - (B) It reacts with excess of ammonia at low temperature to form an ionic compound
 - (C) One mole of its reacts with one mole of trimethylamine
 - (D) It reacts with methyl alcohol to form a trimethyl compound liberating oxygen gas

Paragraph for Q. 46 to 48

The small size and high charge of Al^{3+} ion gives it a high charge density which is responsible for its tendency to show (a) covalency in its compounds in the gaseous state (b) high hydration energy which stabilizes its compounds in solution, (c) high lattice energy of its compounds in the solid state. Thus aluminium can form both covalent and ionic bond.

Like halides of boron, halides of aluminium do not show back bonding because of increase in size of aluminium. Actually aluminium atoms complete their octets by forming dimers. Thus chloride and bromide of aluminium exists as dimers, both in the vapour state and in polar-solvents like benzene with corresponding boron halides exists as monomer. In boron trihalides the extent of back bonding decreases with increase in size of halogens and thus Lewis acid character increases. All BX_3 are hydrolysed by water but BF_3 shows a different behaviour.

- **46.** The dimeric structure of aluminium chloride disappears when :
 - (A) it dissolves in water

- (B) it reacts with donor molecules like R₃N
- (C) it dissolves in benzene
- **(D)** (A) & (B) both
- **47.** Which of the following statements are correct?
 - (A) All boron trihalides are hydrolysed to boric acid
 - (B) Anhydrous aluminium chloride is an ionic compound
 - (C) Aluminium halides make up the electron deficiency by bridging with halides or alkyl groups
 - **(D)** None of these
- **48.** Which of the following statements about anhydrous aluminium chloride is correct?
 - (A) it is an ionic compound
- (B) it is not easily hydrolysed
- (C) it sublimes at 100°C under vaccum
- **(D)** it is a strong Lewis base

Paragraph for Q. 49 to 53

"A" is a white crystalline solid. Its aqueous solution is alkaline in nature. It is used in water softening. On heating it swells up to form a puffy mass, B. Strong heating of B gives C. Heating of C with nickel oxide gives a brown bead, D.

Answer the following:

VMC | MEQB 192 p-Block Elements-1

- **49.** The number of moles of water of crystallization present per mole of the compound. A is:
 - (A)
- **(B)**

- **(C)** 7
- **(D)** 9

- **50.** The aqueous solution of A is alkaline due to :
 - (A) The presence of Ca^{2+} ions
- **(B)** The presence of H_3BO_3

(C) Hydrolysis of $B_4O_7^{2-}$

10

- **(D)** Hydrolysis of CO_3^{2-}
- **51.** When the solution of A is added to hard water, Ca^{2+} are eliminated as:

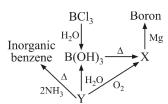
5

- (A) $CaCO_3$
- (B)
- $Ca(BO_6)_2$

 B_2O_3

- (C) CaB_4O_7
- **(D)** $Ca_2B_6O_{11}$

- **52.** Composition of the substance, B is :
 - (A)
- $\mathrm{Na_{2}B_{4}O_{7}}$
- (B)
- - (C) H_3BO_3
- **(D)** HBO₂
- **53.** The components of glassy bead. C and brown bead D respectively are :
 - (A) NaBO₂ and NiO


(B) B_2O_3 and $Ni(BO_2)_2$

(C) $NaBO_2$ and NiB_4O_7

(D) B_2O_3 and $NaBO_2$

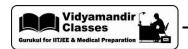
Paragraph for Q. 54 to 55

- **54.** The compound Y is:
 - (A)
- BCl_3 (B)
- BF_3
- B_2H_6
- **(D)** B₂O₃

- **55.** The compound X is :
 - (A) B
- B_2H_6 **(B)**
- $\left[B(OH)_{4} \right]^{-}$
- (C) B_2O_3
- **(D)** $H_2B_4O_7$

Paragraph for Q. 56 to 58

The silicons are organosilicon polymers containing Si-O-Si linkage. They are usually prepared by hydrolysis of alkylchlorosilanes, the silanols formed as intermediates on hydrolysis condense by intermolecular elimination of water with the formation of Si-O-Si linkage


The above silicon can be obtained by hydrolysis of which of the following?

(A) $(CH_3)_3$ SiCl

(B) $CH_3SiCl_3 + (CH_3)_3SiCl$

(C) $(CH_3)_2 SiCl_2$

- (D) $CH_3SiCl_3 + (CH_3)_2 SiCl_2$
- **57.** Which of the following is not the property of silicone?
 - **(A)** They are thermally stable
- **(B)** They are having high volatility
- (C) They are having water repellent property (D)
- They are electric insulators

- **58.** To get the silicone of $R_3Si (OSiR_2)_n SiR_3$; having four Si O Si linkages, the unit taken is :
 - (A) 3 unit of R_3SiCl and 2 unit R_2SiCl_2
- **(B)** 3 unit of R_2SiCl_2 and 2 unit R_3SiCl
- (C) 2 unit of R_2SiCl_2 and 2 unit R_3SiCl
- **(D)** 4 unit of R_2SiCl_2 and 2 unit R_3SiCl

Paragraph for Q. 59 to 61

$$Borax \xrightarrow{\ \ H_2SO_4 \ \ } P \xrightarrow{\ \ strong \ \ } Q \xrightarrow{\ \ Mg/Heat \ \ } R \xrightarrow{\ \ Cl_2 \ \ } S \xrightarrow{\ \ LiAlH_4 \ \ } X \xrightarrow{\ \ NH_3 \ \ } Y \xrightarrow{\ \ 200^{\circ}C \ \ } Z$$

(All products from P to Z are related to Boron. The by products are not included)

- **59.** The compound X is :
 - (A) B_2H_6
- **(B)** H_3BO_3
- (C) B_2O_3
- (D) Moisson Boron
- **60.** The ionic structure $\left[BH_2(NH_3)_2\right]^+\left[BH_4\right]^-$ corresponds to :
 - (A) Z
- **(B)** Y
- (C) X
- **(D)** S

- **61.** The following is called inorganic benzene :
 - **(A)** P
- **(B)** X
- (C)
- (D) Z

Paragraph for Q. 62 to 64

Diborane (B_2H_6) on heating with NH_3 at 450 K produces a compound called Borazole (or) Borazine. It is called inorganic benzene (or) triborane triamine. It is a colourless liquid. It has cyclic structure.

- **62.** Number of $sp^2 sp^2$ overlaps in Borazine :
 - (A)

- **(B)** 3
- (C)
- **(D)** 8

- **63.** B_2H_6 on reaction with CO forms :
 - (A) $[BH_3 \cdot CO]$
- BC + CO_2
- (C) BC + H_2O
- **(D)** $B + CO_2 + H_2O$

- $\textbf{64.} \qquad \mathrm{B_2H_6} + \mathrm{HCl} \xrightarrow{\quad \mathrm{Anhydrous} \ \mathrm{AlCl_3} \quad} \mathrm{X} + \mathrm{H_2} \uparrow \ \ \mathrm{'X'} \ \ \mathrm{is} :$
 - (A)
- $B_2H_4Cl_2$
- (B)
- B₂H₄Cl₄
- (C) B_2H_5Cl
- **(D)** $B_2Cl_6 + H_2$

ASSERTION & REASON TYPE

The following questions consist of two statements one labelled ASSERTION (A) and the another labelled REASON (R). Select the correct answers to these questions from the codes given below:

- (A) Both Assertion and Reason are true and Reason is correct explanation of Assertion
- **(B)** Both Assertion and Reason are true and Reason is not correct explanation of Assertion
- (C) Assertion is true but Reason is false
- (D) Assertion is false but Reason is true
- **65. Assertion:** Al shows passivity with conc. HNO₃
 - **Reason :** Al forms a protective layer of Al_2O_3 with conc. HNO_3
- **66. Assertion:** Al liberates H_2 gas with both NaOH and HCl
 - **Reason:** Al is amphoteric metal

67. Assertion : Alums are acidic in nature

Reason: Due to cationic Hydrolysis

68. Assertion: Among IIIA group elements boron has highest melting point

Reason: Boron exists as a giant covalent polymer

69. Assertion : Thallium compounds are stable in +1 oxidation state

Assertion: The $6s^2$ electrons in Tl show reluctanace in participation in bond formation

70. Assertion : BF₃ undergoes partial hydrolysis.

Reason: Due to strong back bonding in BF_3 only two fluoride groups gets hydrolysed by H_2O .

71. Assertion : Diborane has two types of hydrogens

Reason: By methylation only four hydrogen atoms of diborane are substituted forming Me₄B₂H₂

72. Assertion: Borazole is inorganic benzene

Reason: Benzene and Borazole are isoelectronic and show structural similarity

73. Assertion: When diborane is heated with NH₃ at 200°C, borazole is obtained

Reason: Borazole is known as inorganic benzene

74. Assertion: Boron always forms covalent bond

Reason: The small size and high charge on boron favours formation of covalent bond

75. Assertion: Among the trihalides of Boron with different halogen atoms, the Lewis acid character

follows the order $-BF_3 < BCl_3 < BBr_3$

Reason: $p\pi - p\pi$ back bonding is maximum in the case of fluorine due to its small size and more

interelectronic repulsions.

76. Assertion: BCl_3 can be hydrolysed to form H_3BO_3 .

 ${f Reason:}$ Boron having vacant 2p-orbital can accept a lone pair from H_2O molecule

77. Assertion: Boric acid is a tribasic acid

Reason: Boric acid contains three hydroxyl groups

78. Assertion: C_3O_2 has linear structure

Reason: Each carbon atom in C_3O_2 is sp-hybridized

79. Assertion: SiCl₄ reacts with water but CCl₄ does not react with water

Reason: SiCl₄ is ionic but CCl_4 is covalent

80. Assertion: CO_2 is a gas, while SiO_2 is solid

Reason: Carbon has no vaccant 'd' orbitals but silicon has

81. Assertion: The central carbon atom in $F_2C = C = CF_2$ and both carbon atoms in both

 $F_2B - C \equiv C - BF_3$ are sp-hybridized.

Reason: Both molecules are planar.

82. Assertion: Carbonate and silicates are isostrucutral

Reason: Carbon and silicon have same number of valence electrons

 $\textbf{83.} \qquad \textbf{Assertion:} \qquad \text{Bond dissociation energy of } B-F \quad \text{bond in } BF_3 \quad \text{molecule is lower than } C-F \quad \text{bond in}$

CF₄ molecule.

Reason: Atomic size of B-atom is larger than that of C-atom.

84. Assertion: Diamond is extremely hard and non volatile substance

Reason: In diamond strong C-C bonding is present throughout the crystal

85. Assertion: The value of x of $(Si_4O_{12})^{x-}$ is 8

 $\textbf{Reason:} \qquad \text{In } \left[\mathrm{Si}_4\mathrm{O}_{12}\right]^{x-} \ \text{every } \mathrm{SiO}_4 \ \text{tetrahedra unit having 2 oxygen shared and 2 oxygen}$

unshared.

MATRIX MATCHING TYPE

86. Match the List-1 and List-II

	List-1					List-	2					
(1)	Al_2O_3				(P)	Dime	Dimer					
(2)	AlCl_3				(Q)	Non-	Non-metal					
(3)	В				(R)	Acid	Acidic					
(4)	B_2O_3				(S)	Amp	Amphoteric					
The co	rrect ma	atch is :										
	1	2	3	4		1	2	3	4			
(A)	S	R	Q	P	(B)	P	S	R	Q			
(C)	Q	R	S	P	(D)	S	P	Q	R			

87. Match the List-1 and List-II

1114001		-50 - 411									
	List-	1		List-2							
(1)	Boro	n Nitride)		(P)	Inorganic Benzene					
(2)	Bora	zole			(Q)	Inorganic graphite					
(3)	Ruby	7			(R)	Grap	Graphite				
(4)	Blacl	k lead			(S)	Aluminium oxide					
The co	orrect n	natch is	:								
	1	2	3	4		1	2	3	4		
(A)	S	R	Q	P	(B)	P	S	R	Q		
(C)	Q	R	S	P	(D)	Q	P	S	R		

88. Match List (Fuels) with List II (Composition) and select the correct answer using the codes given below the lists:

	List-I (Fuels)				List-II (Composition)				
1.	Water g	gas			i.	A mixture of CO and N_2				
2.	Produc	er gas			ii.	Methane				
3.	Coal ga	ıs			iii.	A mixture of CO and H_2				
4.	Natura	l gas			iv.	A mixture of CO, $\rm H_2$, $\rm CH_4$ and $\rm CO_2$				
	1	2	3	4		1	2	3	4	
(A)	iii	i	iv	ii	(B)	iii	i	ii	iv	
(C)	i	iii	iv	ii	(D)	iii	ii	iv	i	

VMC | MEQB 196 p-Block Elements-1

89. Match the following :

Column I

Column-II

(A) B_2H_6

(p) tetrahedral hybridisation

(B) Al_2Cl_6

(q) trigonal hybridisation

(C) $BeCl_2$ (solid)

(r) Empty orbital(s) of central atom participate in hybridization

(D) $N(SiH_3)_3$

(s) $p\pi - d\pi$ bonds

90. Match the following:

Column I

Column-II

- (A) $Al_2(C_2)_3 + H_2O \longrightarrow$
- (p) One of the products contains both σ and π -bond
- **(B)** $CH_2(COOH)_2 + P_4O_{10} \longrightarrow$
- (q) Hydrolysis
- (C) $CH_3SiCl_3 + H_2O \longrightarrow$
- (r) Dehydration
- **(D)** SnCl₂ · 2H₂O $\xrightarrow{\text{on}}$ standing
- (s) Complex crosslinked polymer

INTEGER TYPE

- **91.** In borax the number of boron atoms which are sp^2 hybridised is:
- **92.** Which of the following are Lewis acid B₂H₆, BCl₃, CO₂, CF₄, Al₂Cl₆, AlF₃, SiCl₄
- **93.** Consider the structure of Al_2Me_6 compound and find the total number of atoms that are sp³ hybridised.
- 94. How many of the following compounds cleave diborane symmetrically ? CH_3NH_2 , $(CH_3)_2$ NH, $(CH_3)_3$ N, CO, $(CH_3)_2$ O, NH₃
- **95.** How many of the following order of bond energies are correct?
 - (i) C-C > Si-Si
- (ii) C-O > Si-O
- (iii) C-F > Si-F

- (iv) C-H > Si-H
- (v) Si Cl > C Cl
- (vi) Si Si > Ge Ge
- **96.** Which of the following oxides are amphoteric in nature.

- **97.** Find the number of hydroxyl group in borax.
- 98. How many compounds are acidic.

$$B_2O_3$$
, Tl_2O_3 , $Al(OH)_3$, $Ga(OH)_3$, Al_2O_3 , Ga_2O_3 , $Sr(OH)_2$, Cr_2O_3 , CO , SiO_2

99. Number of compounds producing gas on hydrolysis (with H_2O) is _____

$$\mathrm{Al_4C_3},\,\mathrm{BaC_2},\,\mathrm{Mg_2C_3},\,\mathrm{SiC},\,\mathrm{B_2H_6},\,\mathrm{Fe_3C}$$

100. SiF₄ on hydrolysis gives X and Y. SiCl₄ on hydrolysis gives X and Z. Covalency of central atom in Y is C_1 and that of halogen in Z is C_2 . Then $C_1 + C_2$ is: